Welcome to sc-jnmf’s documentation!¶
sc_jnmf package¶
Submodules¶
sc_jnmf.sc_jnmf module¶
- 
class sc_jnmf.sc_jnmf.sc_JNMF(D1, D2, rank, lambda1=1.0, lambda2=0.0, lambda3=0.0, lambda4=1.0, W1=None, W2=None, H=None, geneset1=None, geneset2=None, cluster=None)¶
- Bases: - object- An analysis tool using Joint-NMF for single cell gene expression profiles. - Parameters
- D1 (pandas DataFrame) – Gene expression matrix of pandas dataframe (row : gene, col : cell). D1 columns must be same as D2 columns. 
- D2 (pandas DataFrame) – Gene expression matrix of pandas dataframe (row : gene, col : cell). D2 columns must be same as D1 columns. 
- rank (int) – The rank in matrix factorization. 
- lambda1 (float, default 1.0) – The coefficient (parameter) of |D2-W2*H|_F^2 in the objective function. 
- lambda2 (float, default 0.0) – The coefficient (parameter) of |W1| (l1 or l2 norm) in the objective function. 
- lambda3 (float, default 0.0) – The coefficient (parameter) of |W2| (l1 or l2 norm) in the objective function. 
- lambda4 (float, default 1.0) – The coefficient (parameter) of |H| (l1 or l2 norm) in the objective function. 
- W1 (2d ndarray or None, default None) – Initial value of factorized matrix (gene * rank). 
- W2 (2d ndarray or None, default None) – Initial value of factorized matrix (gene * rank). 
- H (2d ndarray or None, default None) – Initial value of factorized matrix (rank * cell). 
- geneset1 (None) – The result of ‘gene_selection’ in geneset1. 
- geneset2 (None) – The result of ‘gene_selection’ in geneset2. 
- cluster (None) – The result of cell clustering. 
 
 - 
clustering(method='hierarchical', cluster_num=None)¶
- This function classify the cells of input data. - Parameters
- method (str, default 'hierarchical') – Select the methods for clustering. In this version, only ‘Hierarchical clustering’. is supported. 
- cluster_num (int or None, default None) – Give the number of clusters. 
 
 
 - 
factorize(solver='mu', init='random', device='gpu')¶
- This function fuctorize the input gene expession matrix as ‘Joint-NMF’. - Parameters
- solver (str, default 'mu') – The solver of Joint-NMF. In this version, only ‘multiplicative update’ is supported. 
- init (str or None, defaut 'random') – The initialization of factorized matrix. In this version, only ‘random’ is supported. 
- device (str, default 'gpu') – Select the device for matrix factorization. ‘gpu’ means it is calculated using GPU, and others means calculated using CPU. 
 
 
 - 
gene_selection(rm_value1=2, rm_value2=0, threshold=0.06)¶
- Gene filter same as SC3 clustering [Kiselev et al, 2017, nature methods(doi:10.1038/Nmeth.4236)]. This function removes gene that are either expressed (expression value > rm_value1) in less than (threshold*100)% of cells (rare genes) or expressed (expression value > rm_value2) in at least (threshold*100)% of cells (ubiquitous genes). - Parameters
- rm_value1 (int or float, default 2) – threshold for counts as “gene expression” in removing rare genes. 
- rm_value2 (int or float, default 0) – threshold for counts as “gene expression” in removing ubiquitous genes. 
- threshold (float, default 0.06) – threshold of the number of cells that satisfy the condition for removing. 
 
 
 - 
log_scale()¶
 - 
normalize(norm='l1', normalize='cell')¶
- This function normalize the input gene expression data. - Parameters
- norm (str, default 'l1') – Norm parameters for sklearn.preprocessing.Normalizer. 
- normalize (str, defaault 'cell') – Select ‘cell’ or ‘gene’ as the target of normalization.